专注AIGC领域的专业社区,关注微软&OpenAI、百度文心一言、讯飞星火等大语言模型(LLM)的发展和应用落地,聚焦LLM的市场研究和AIGC开发者生态,欢迎关注! 我们都知道,大模型肚子里只有训练时学到的那些知识,有一个“截止日期”。为了解决这个问题,RAG ...
检索增强生成(RAG)早已不是简单的向量相似度匹配加 LLM 生成这一套路。LongRAG、Self-RAG 和 GraphRAG 代表了当下工程化的技术进展,它们各可以解决不同的实际问题。 传统 RAG 的核心限制 标准的 RAG 流程大概是这样的:把文档分割成小块、向量化、通过余弦相似度 ...
本文提出TreeQA框架,通过逻辑树分解多跳问题、融合结构化(KG)与非结构化知识源,并引入迭代自校正机制,显著提升大 ...
Much of the interest surrounding artificial intelligence (AI) is caught up with the battle of competing AI models on benchmark tests or new so-called multi-modal capabilities. But users of Gen AI's ...
A new study from Google researchers introduces "sufficient context," a novel perspective for understanding and improving retrieval augmented generation (RAG) systems in large language models (LLMs).
A consistent media flood of sensational hallucinations from the big AI chatbots. Widespread fear of job loss, especially due to lack of proper communication from leadership - and relentless overhyping ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果